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Abstract – 
With growing demand for large scale exterior 

envelope prefabrication solutions beyond precast 
concrete, Engineer-to-Order (ETO) prefabrication 
firms must develop reliable methodologies to manage 
finish goods inventory of large components. The 
imbalance between fabrication time and installation 
requires ETOs to forecast likely consumption of 
transportation resources at the proposal stage with 
only a conceptual understanding of the final project. 
Since 2019 US domestic trucking costs have increased 
due to demand. Therefore, ETOs need a reliable 
forecasting trailer usage model for estimating 
transportation costs at the proposal phase and 
mitigate the risks of an arbitrary approach. The 
proposed model was developed and evaluated by 
using a supervised machine learning algorithm on a 
large data set collected from completed exterior 
prefabricated panel projects in the US. The model 
was then tested and compared to estimations 
completed by a professional prefabrication estimator. 
The model can assist ETOs with projecting the 
quantity of trailers likely necessary for a 
prefabricated panel project with less variance at the 
proposal phase with limited information. The 
increased accuracy can reduce the financial exposure 
of the ETOs. 
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1 Introduction 
Industrialized Construction (IC) and Modern 

Methods of Construction (MMC) are evolving 
applications of manufacturing methodology and lean 
practices to improve the productivity and final project 
outcomes in the construction industry. This is achieved 
through the decoupling of sub-assembly operations from 

the traditional construction site and fabricating these 
building components at facilities located off-site [1]. An 
accepted overarching term utilized throughout the 
construction industry is prefabrication. Adoption of 
prefabrication and offsite construction continues to 
increase to address challenges with schedules, quality, 
sustainability and manpower [2]–[4]. To meet this 
demand, most prefabrication companies deliver their 
products in an Engineer-to-Order (ETO) model [5], [6].  

Prefabrication, as a concept, is not a new idea. The 
United States government utilized prefabrication 
techniques and planning during the Manhattan Project to 
rapidly construct communities that now are part of Oak 
Ridge National Labs [7]. There was a period in the 20th 
Century where companies like Sears and Roebuck sold 
“kitted” residential homes that were a form of 
prefabrication.   However, the complexity of systems and 
components of buildings that are now being utilized are 
much more intricate for onsite prefabrication and offsite 
prefabrication. Onsite prefabrication can include 
constructing subassemblies while on the jobsite prior to 
the permanent installation. Offsite prefabrication is 
completed in a production facility focused on a specific 
building element, and requires consideration of new 
challenges in transportation, supply chain and logistics. 
Therefore, ETO’s must examine other products and 
solutions that have evolved to address these challenges in 
the supply chain. 

This study specifically focuses on examining 
prefabricated exterior systems, such as the panel systems 
fabricated by the ETO companies, that are multi-layered 
high-energy performance cladding systems that layer 
various building materials to create the panels [1]. For 
decades, precast concrete has been available to building 
owners as an exterior cladding option for their facilities. 
Unitized glazing systems have offered building owners 
an exterior system that can be preassembled on or offsite 
and installed as large units on the façade, improving 
overall productivity.  
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Whether its precast, unitized glazing, or prefabricated 
exterior panels, these units are large and take up 
substantial space while being staged at either an offsite 
facility or onsite [8] . Depending on the jobsite or the 
prefabrication facility location, staging areas are often 
limited. Some jobsites may constrain the subcontracting 
companies to follow a Just-In-Time (JIT) delivery 
approach because there are insufficient staging areas 
within the confines of the site [9].  

ETO companies develop project specific solutions 
to meet the needs of a given project. Often, this work is 
procured at the schematic or design development stage of 
the design process. As such, granular details about the 
panel products necessary to complete the project are not 
yet designed. However, ETO’s regularly must provide a 
fixed price or Guaranteed Maximum Price to their clients 
that have to be cost competitive to warrant the inclusion 
of their products in the project. This requires 
preconstruction and estimating teams of the ETO to 
utilize their experiential knowledge to develop their 
proposal. At the point of proposal submission, the ETO 
generally has information regarding the orientation of the 
panels, the square footage of the project, a preliminary 
panel count, framing style and, aesthetic finishes. The 
experiential knowledge of the estimators is subjective 
and limited to their personal experience or the 
institutional knowledge of their organization. One area 
that shows large fluctuations in accuracy in the estimate 
is the estimation of the number of trailers necessary to 
transport the finished panels from the manufacturing 
facility to the jobsite. Since the onset of the COVID 
pandemic, over-the-road trucking costs have increased 
four to five-fold compared to 2019 for subcontracted 
over-the-road hauling services in the United States. This 
has magnified the financial impact of errors in the 
forecasting of trailers at the proposal stage. In the event 
the estimator errors too low, the costs quickly compound 
and erode profitability for the ETO. Conversely, overly 
conservative estimating of trailers may cause the ETO’s 
proposal to be viewed as too expensive. To address this 
challenge, ETO companies must assess multiple 
strategies for addressing management of their finished 
goods inventories to align both installer and customer 
demands.   

This study presents an automated forecasting model 
that ETO fabricators can utilize at the estimate stage of a 
project to forecast the quantity of over-the-road trailers 
necessary to transport a prefabricated panel project from 
its place of fabrication to the jobsite for final installation 
on the building.  By drawing on a large data set compiled 
from completed projects of twelve ETOs the model can 
forecast likely trailer counts with less variance than a 
professional estimator. ETOs are generally limited to 
their own experiential knowledge from their data set of 
projects.  

The paper is organized to present the objective, 
followed by a literature review, then an overview of the 
model creation including data collection and validation. 
Conclusions drawn from the study, limitations of the 
current model and future research complete the paper. 

 
1.1    Objective 

The objective of this study is to develop an 
innovative automated model that is capable of 
forecasting trailer usage for prefabricated exterior wall 
panels with greater accuracy than current methods. The 
model utilizes supervised machine learning algorithms 
on a large data set collected from completed projects 
from multiple companies in the US. The model can be 
used by ETO fabricators at the estimate stage of a project 
to forecast trailers necessary to transport a project from 
its origin place of fabrication to the final destination (i.e., 
jobsite). The development of the tool can reduce the 
potential for financial risk associated with poorly 
predicting the number of trailers necessary for a project.  
 
2      Literature Review  

Studies have identified multiple factors that 
contribute to the complexity of the supply chain 
challenges in the construction industry [10]. The research 
determined there were four overarching categories that 
the challenges could be organized within. Those are: 
material flow, company communication, project 
communication, and complexity. The challenges 
identified by their respondents are wide ranging and 
require substantial management and planning effort to 
overcome successfully.  

Communication between the project site and ETO 
companies can be challenging relative to demand needs. 
This creates a disruption in the production process. 
Panova and Hilletofth [11] used dynamic modelling  to 
attempt to manage construction supply chain risks caused 
by delays. Their research recommends that suppliers 
implement safety stocks as a method of minimizing 
disruptions. Utilizing buffer space for safety stock also 
minimized disruption of the production sequence and 
onsite activities, ultimately reducing the bullwhip effect 
[12], [13]. While the managerial approach of creating 
safety stock to address the fluctuating demand prevents 
the potential site disruption caused by delayed deliveries 
may appear to address the problem, it creates a secondary 
problem of storage for large construction components 
and assemblies at the factory or intermediate staging site. 

The importance of thorough planning in 
construction supply chain is a critical step increasing the 
likelihood of a successful project  and it becomes even 
more critical when utilizing ETO prefabricated 
components [6], [10].  There is positive impact on the 
project costs and nonvalue add process of Zero Inventory 
compared to the benefits to the project utilizing a Smart 
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Manufacturing Zero-Warehousing approach that relies 
on communication and feedback between the ETO 
companies and construction site [8]. The importance of 
communication between the onsite installation and the 
ETO company is critical to the successful outcome of the 
project. Inter-organizational coordination, cooperation 
and learning to form an overall project team focused on 
executing a successful project versus multiple 
independent teams can be achieved [14]. 

Demand variability on construction sites for 
construction materials, such as precast products, can be 
an impediment to success due the demand of on-time 
delivery to keep the project on schedule [15]. The 
importance of thorough planning in construction supply 
chain is a critical step to increase the likelihood of a 
successful project  and it becomes even more critical 
when supply is constricted [10].  A research study was 
conducted to attempt to optimize transportation costs and 
the quantity of trucks [16]. Although this research has 
some fundamental application, it considered weight and 
volume of prefabricated components as part of the 
characteristics of the products. However, there were no 
multi-dimensional attributes considered. It did not 
consider specific important transportation aspects 
inherent in building façade panels, such as precast, and 
the likelihood for oversized loads. This research also did 
not account for large variability in sizes that may result 
from custom nontypical building products. 

On time deliveries of products to the jobsite are 
critical to maintain a project’s flow. One approach to 
mitigate late deliveries caused by manufacturing 
challenges can be addressed through the managed 
incorporation of a buffer or safety stock. Implementation 
of a safety stock either at a permanent or temporary 
location can help to minimize disruptions [11]. Further 
research through surveys have examined preferences for 
buffer stock levels to mitigate disruptions [9]. Therefore, 
it is important to consider the costs associated with large 
buffer stocks which can become costly if there is not a 
contractual vehicle for billing for that material in a timely 
manner. 

For full realization of the schedule benefits of 
prefabrication, the prefabricated components must arrive 
at the project site when the schedule demands. Late or 
early deliveries of prefabricated assemblies can cause 
disruption to the project site and can result in double 
handling [12]. The expectation of the prime contractor is 
the entity responsible for transportation plans for storage 
space to deal with slow site installation or bad weather.  

Through a survey conducted of ETO exterior 
panel fabricators it was found that all the respondents 
store their finished goods inventory of panels on trailers 
prior to shipment to the jobsite [17]. Nearly 50% of the 
respondents reported slowing or halting production due 
to issues with storing finished good inventory. To 

address these aforementioned research gaps, this study 
focuses on the utilization of completed projects to 
develop a model capable of forecasting trailer resources 
for projects at the proposal stage.  

3   Model Development 
The automated forecasting model was developed in 

two steps. Data were collected on randomly selected 
prefabricated panel projects. In order to be included in 
the data set, the projects had to be completed so that 
characteristics of the project were actual and not 
estimated or theoretical. Data were analyzed, and 
validated using a supervised machine learning algorithm 
to assess the practical functionality of the model in 
forecasting trailer resources.  

3.1    Project Data Collection 
Data were collected from ETO prefabricators 

specializing in exterior wall panels for 107 completed 
projects that included characteristics of the panels along 
with the number of trailers utilized to transport the 
finished goods to the jobsites. This task needed an 
exhausting effort and meticulous organization to reach 
out to all ETO prefabricators in the US and create a 
dataset on the completed projects.  

The project specific data spanned over a four-year 
period and were collected from multiple companies 
servicing different regions of US. It is noteworthy to 
mention that this research did not focus on transportation 
distance because it does not affect actual trailer trips to 
and from the factory and jobsite. 

Data set created for utilization in this study included 
both macro and specific characteristics of the exterior 
panels fabricated for the project. Macro level 
characteristics included total square footage of panels 
and number of panels built for the project. Additionally, 
the respondents were followed up to gather more detailed 
information relative to the panels’ structural 
configuration as part of the building skin as either a By-
Pass, Infill or Load-Bearing configuration.  Specific 
information on the panels fabricated for a project 
included panel finishes. The following variables were 
included: 
• Cornice/Parapet Element 
• Frame only 
• Back-up 
• EIFS 
• Metal 
• Thin Brick (with cast bed) 
• Thin Brick (over foam) 
• Fiber Cement Siding 
• Aluminum Composite Panel (ACM) 
• Acrylic Panel 
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• Other 

The cornice/parapet element refers to a thickened 
architectural detail at the top of the panel. This has 
potential significance because it would create differing 
panel thickness that must be accounted for in the loading 
of panels. Frame only panels are comprised of only cold-
formed metal studs and no other materials. This would 
make them, potentially, the thinnest cross-section of any 
of the panel types. Back-up panels are comprised of 
studs, sheathing, and an applied air/vapor barrier. 
Exterior Insulated Finishing System (EIFS) panels have 
foam and an applied finish beyond that of a back-up 
panel. Metal panel finishes could include insulated metal 
panel, corrugated metal siding or machine bent formed 
panel assemblies. Thin brick over cast bed is a 
multilayered approach applied to the back-up panel that 
includes a slip sheet, lath/mesh and a cementitious cast 
bed applied to the panel prior the installation of 
commercially available thin brick materials. In contrast 
to the thin brick over cast bed, the thin brick over foam 
allows for the adhesion of thin brick materials to the 
cementitious base coat applied to foam that is adhered to 
the back-up panel. Fiber cement siding, along with 
attendant insulation, is applied to the back-up panel 
assembly per the manufacturer’s instructions. This is 
often constructed in a rain-screen configuration. The 
aluminum composite panel is often fabricated out of 
sheets and machined into desired geometries prior to 
being installed on the back up panel with the attendant 
carrier system. The “Other” finish allowed for the 
respondents to provide data on projects that did not have 
any of the finishes provided as options. Respondents also 
provided the actual number of trailers that were utilized 
to transport the finished panels from their fabrication 
facility to the project site. 

3.2  Data Analysis and Validation 
Dataset were analyzed using a supervised machine 

learning algorithm involving multiple data variables for 
analysis. The data was analyzed in Minitab V20.4 
utilizing multivariate regression of the panel 
characteristics (predictors) regressed on the number of 
trailers (response) The results were evaluated along with 
the residuals to determine the reliability of the  
selectedmachine learning algorithm. To assist with 
evaluation and description of the resulting equation, the 
number of trailers was transformed to the log natural and 
the multivariate regression was then performed again 
[20].  

To estimate the validity of the automated forecasting 
model, derived from the set of 107 completed projects, 
data from actual projects  not in the data set were input 
into the equation and the forecasted trailer resources were 
then compared to the actual number of trailers utilized for 

that project. Furthmore, the developed model was also 
tested on a professional estimator. The estimator  had no 
prior knowledge of the actual projects and was engaged 
to forecast the number of trailers necessary on the four 
sample projects utilizing their experiential knowledge. 
The variances from actual were then evaluated for 
practicality of the developed model.  

4    Results and Discussion 

4.1    Numerical Results 
4.1.1 Data Collection 

Data from 107 randomly selected completed projects 
was gathered and analyzed as part of this study. Table 1 
summarizes the total data set by the 14 predictor 
variables (x) and the outcome variable (y).  

It is noteworthy to mention that there were no 
respondents that provided data for acrylic panel finishes 
so that predictor was not considered in the evaluation as 
it would add no value. The square footage and number of 
panels predictors are continuous variables; the remaining 
predictors are binary categorical variables.  

Table 1. Summarized Data Set of Panel Projects 

Variable Total % of 
Total 

Square Footage (x1) 5,020,976 100 
Number of Panels (x2) 43,722 100 

Bypass (x3) 71 66 
Infill (x4) 12 11 

Load-Bearing (x5) 26 24 
Cornice/Parapet (x6) 9 8 

Frame Only (x7) 26 24 
Back-up (x8) 22 21 

EIFS (x9) 44 41 
Metal (x9) 4 4 

Thin Brick (cast bed) 
(x10) 

3 3 

Thin Brick (over foam) 
(x11) 

3 3 

Fiber Cement Siding (x12) 2 2 
Aluminum Composite 

(x13) 
1 1 

Other (x14) 6 6 
Number of Trailers 

(y) 
2,559 100 

4.1.2 Data Analysis 

To analyze the collected data, the forecating model 
was developed by using a upservised machine learning 
algotirhm. The panel characteristics (predictors 
presented in Table 1) were regressed on the number of 
trailers (outcome). Equation 1 presents results from the 
analysis, that represents the unstandardized regression 
coefficients (R2 = 79%): 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  −6.23 + 0.000411𝑥𝑥1 − 0.01204𝑥𝑥2 +
17.2𝑥𝑥3 + 18.11𝑥𝑥4 + 11.58𝑥𝑥5 + 0.4𝑥𝑥6 − 10.06𝑥𝑥7 −
5.45𝑥𝑥8 − 0.69𝑥𝑥9 + 25.73𝑥𝑥10 − 1.09𝑥𝑥11 − 2𝑥𝑥12 +

44.95𝑥𝑥13 − 1.08𝑥𝑥14                             (1) 
 

Examination of residuals suggests a few data points 
are outliers. Figure 1 presents the Normal Probability 
Plot of the residuals and Figure 2 shows the Versus Order 
Plot of Observation Order and Residuals.  
 

 
Figure 1. Normal probability plot of residuals 
versus percentage 

 
Figure 2. Versus order plot of observation order 
versus residuals  

To help interpret the unstandardized regression 
coefficients from Equation 1 in terms of the estimated 
percent change in the number of trailers as a function of 
a one unit change of the predictors, trailers was 
transformed to its natural log (LN transformation) and the 
regression equation was recalculated. As an example, for 
every 1,000 square feet of panel (x1) there is an estimated 
1.3% increase in the number of trailers needed (see 
Equation 2): 

 
𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1.158 + 0.000013𝑥𝑥1 − 0.000118𝑥𝑥2 +

1.191𝑥𝑥3 + 0.835𝑥𝑥4 + 0.695𝑥𝑥5 + 0.066𝑥𝑥6 −
0.688𝑥𝑥7 − 0.233𝑥𝑥8 + 0.019𝑥𝑥9 + 0.775𝑥𝑥10 +

0.066𝑥𝑥11 + 0.104𝑥𝑥12 + 1.358𝑥𝑥13𝑥𝑥 − 0.133𝑥𝑥14      (2) 
 

To evaluate the functionality and accuracy of the 
applied machine learning algorithm, four randomly 

selected projects were evaluated that were not part of the 
original data set. The characteristics for the model were 
gathered for each of the projects. Utilizing Equation 1, 
predictions were made relative to the number of trailers 
and then compared to the actual number of trailers 
utilized. The predictors for the four sample projects are 
presented in Table 2. The square footage and panel count 
are presented as integer numbers. The balance of the 
predictors is presented as binary number because they 
either are part of the panels of the selected project or are 
not.  

Utilizing Equation 1, project predictors were 
regressed on the number of trailers. The results of the 
application of the model equation are presented in Table 
3 along with the actual number of trailers utilized in the 
sample projects.  

As a practical matter, there are no partial trailers so 
the resultant prediction can either be rounded up for 
conservative purposes or the practitioner can choose to 
round down the predicted number and manage their 
efforts to meet that goal. Results across the four projects 
found the regression model produced reasonable results 
for three of the four sample projects. In the case of project 
2, the results exceeded the actuals by approximately one-
third. 

Table 2. Sample Projects with Attendant Predictors 
Predictor #1 #2 #3 #4 

Square Footage 10,942 11,507 40,658 92,500 
Number of Panels 70 33 109 287 
Bypass 1 1 1 1 
Infill 0 0 0 0 
Load-Bearing 0 0 0 0 
Cornice/Parapet 0 0 1 1 
Frame Only 0 0 0 0 
Back-up 1 1 1 0 
EIFS 0 0 1 0 
Metal 0 0 0 1 
T Brk (cast bed) 0 0 0 0 
T Bck (ovr foam) 0 0 0 0 
Fiber Cmt Siding 0 0 0 0 
ACM 0 0 0 0 
Other 0 1 0 0 

To assess the practicality of the model an estimator in 
the prefabrication space was interviewed. The estimator 
stated that the challenge of trucking costs of finished 
panels has caused financial challenges on some projects 
due to the cost impact related to the estimated trailer 
quantities and the actuals necessary to complete the 
project. The estimator has started to utilize a rate of 
$2,000USD per trailer load compared to $500USD per 
trailer load 3 years ago. The estimator was then asked to 
evaluate the 4 sample projects to predict the trailer usage 
necessary for those projects and was provided the same 
project characteristics as presented in Table 2. The results 
of the estimator’s forecast along with potential cost 
impacts, utilizing $2,000USD per trailer load cost, are 
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presented in Table 3. Negative cost variance values 
represent a loss or expense to the ETO and positive 
variances are savings compared to estimate. 

The forecasts for both the model and the estimator 
compared to actual resulted in a likely loss on 
transportation costs for the ETO. However, the utilization 
of the model with the same data set as provided the 
estimator improved the accuracy of the estimate by 
nearly 400% in terms of dollars saved. The estimated 
value for each trailer load can vary by location, region, 
and available resources. Total haul distance (milage) can 
also have an impact on per load cost. However, the 
magnitude of the variance is significant enough to be a 
potentially desirable solution for ETO’s as a risk 
mitigation tool for cost overruns relative to trailer usage 
on project compared to arbitrary means. 
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5   Conclusion 

Statistical analysis of 107 completed prefabricated 
panel projects was conducted to evaluate whether 
specific characteristics of the project can be utilized to 
forecast the number of trailers necessary to transport the 
finished panels to the jobsite. A predetermined but broad 
set of predictors were analyzed using a supervised 
machine learning algorithm to estimate the number of 
trailers. The resulting equation can be utilized to forecast 
the number of trailers required to ship panels from the 
ETO’s facility to the project site. Project specific 
information of four additional projects not included in the 
original data set were utilized to validate the model by 
comparing actual number of trailers to the estimated 
quantities of trailers determined by a professional 
estimator in the prefabrication industry. The comparison 
shows that the model can provide forecasts of necessary 
trailers with less variance to actual compared to an 
experienced estimator. ETO’s are incentivized to utilize 
a data driven approach to forecasting compared to 
historical arbitrary approaches due to the high costs of 
transporting the finished panels and the potential for 
adverse financial outcomes.  

Dimensional data of the panels utilized in the data set 
was not solicited due to the custom nature of the solutions 
provided by ETOs and the variability in modern 
architectural aesthetics coupled with structural systems 
of buildings to meet specific project requirements. Panel 
dimensions and packing methodologies of each ETO can 
vary resulting in more or less panels being loaded onto a 
given trailer for transport. By way of example some 
ETOs may prefer nominal 4” dimensional lumber 
compared to others that may use 2” high density foam for 
dunnage. Variation in different states over-the-road load 
restrictions may also affect the number of trailers 
necessary to complete a project. 

No consideration was given to the availability of 
trailers for an ETO as a potential constraint. It is 
presumed that acquisition of the necessary quantity of 
trailers is possible.  

5.1 Limitations 
Results of this study may be limited by size and 

validity of the sample of 107 projects submitted by 
ETO’s for the purposes of this study. For example, 
residuals plots suggest some data points were outliers, 
and some predictors only occurred a few times (e.g., 
metal, thin brick, fiber cement siding, aluminum 
composite). Additionally, the regression analysis did not 
account for projects that have multiple finish 
characteristics such as EIFS, Metal or Fiber Cement to 
achieve the architectural aesthetic. Users should separate 
dissimilar finishes and utilize the supervised machine 
learning algorithm as if there was a separate project, with 
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correlating square footage, for each variation in finish 
type. 

5.2 Future Research 
Ongoing collection of completed project data from 

the original study participants will be utilized to further 
refine and optimize the forecasting model as a user-
friendly tool to help practitioners in the panel 
prefabrication space use data-driven forecasting of trailer 
resources. Future research will also create a simple user 
interface to allow the practitioner to quickly input the 
know predictors and receive a response from the model.  
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